Data Analysis: A Bayesian Tutorial
Author(s)
Sivia, Devinderjit
Skilling, John
Sivia, Devinderjit
Skilling, John
Focusing On Bayesian Methods And Maximum Entropy, This Book Shows How A Few Fundamental Rules Can Be Used To Tackle A Variety Of Problems In Data Analysis. Topics Covered Include Reliability Analysis, Multivariate Optimisation, Least-squares And Maximum Likelihood, And More. 1. The Basics -- 2. Parameter Estimation I -- 3. Parameter Estimation Ii -- 4. Model Selection -- 5. Assigning Probabilities -- 6. Non-parametric Estimation -- 7. Experimental Design -- 8. Least-squares Extensions -- 9. Nested Sampling -- 10. Quantification -- A. Gaussian Integrals -- B. Cox's Derivation Of Probability. D.s. Sivia With J. Skilling. Previous Ed.: 1996. Includes Bibliographical References (p. [237]-240) And Index.
Keywords
Bayesian statistical decision theory, Maximum entropy method, Maximum principles (Mathematics), Engineering mathematics, Science--Mathematics, Bayes Theorem, Data Interpretation, Statistical, QA279.5 .S55 2006, 519.5
Bayesian statistical decision theory, Maximum entropy method, Maximum principles (Mathematics), Engineering mathematics, Science--Mathematics, Bayes Theorem, Data Interpretation, Statistical, QA279.5 .S55 2006, 519.5
Name in long format: | Data Analysis: A Bayesian Tutorial |
---|---|
ISBN-10: | 0198568312 |
ISBN-13: | 9780198568315 |
Book pages: | 264 |
Book language: | en |
Edition: | 2 |
Binding: | Hardcover |
Publisher: | Oxford University Press |
Dimensions: | Height: 6.2 Inches, Length: 9.3 Inches, Width: 0.8 Inches |